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Abstract

We identify a self-enforcing collusion protocol (a “bidding ring”) for
non-repeated first-price auctions. Unlike previous work on the topic such
as that by McAfee and McMillan [1992] and Marshall and Marx [2007],
we allow for the existence of multiple cartels in the auction and do not
assume that non-colluding agents have perfect knowledge about the num-
ber of colluding agents whose bids are suppressed by the bidding ring. We
show that it is an equilibrium for agents to choose to join bidding rings
when invited and to truthfully declare their valuations to a ring center,
and for non-colluding agents to bid straightforwardly. Furthermore, even
though our protocol is efficient, we show that the existence of bidding rings
benefits ring centers and all agents, both members and non-members of
bidding rings, at the auctioneer’s expense.

1 Introduction

We consider the question of how agents can gain by coordinating their bidding in
non-repeated single-good auctions, even when all agents still act selfishly. The
case of second-price auctions is well-studied; we concentrate on the compara-
tively less-studied case of first-price auctions. Overall, collusion is a widespread
phenomenon. Many papers in the literature offer real-world examples of cartels
that have been identified and prosecuted, e.g., under the US’s Sherman Act.
Reduction of revenue due to bidder collusion is therefore a significant practical
threat to auctioneers. Understanding the topic theoretically can help auction-
eers to choose an auction type and to modify the rules of their auctions in order
to make collusion more difficult. Collusion has been observed to occur in both
repeated and single-auction settings; the latter is the focus of our work.
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1.1 Collusion in Second-Price Auctions

Graham and Marshall [1987] wrote one of the first formal papers on collusion,
considering second-price auctions. This paper described a knockout procedure:
agents announce their bids in a knockout auction; only the highest bidder goes
to the auction, but this bidder must pay a ring center the amount of his gain
relative to the case where there was no collusion. The ring center pays each agent
in advance; the amount of this payment is calculated so that on expectation the
ring center will budget-balance ex ante, before knowing the agents’ valuations.

Graham and Marshall’s work has been extended, still considering the case
of second-price auctions, to deal with variations in the knockout procedure,
differential payments, and relations to the Shapley value [Graham et al., 1990].
The case where only some of the agents are part of the cartel is discussed by
Mailath and Zemsky [1991], who also derived a mechanism in which ring centers
achieve ex post budget balance. Work by von Ungern-Sternberg [1988] considers
collusion in second-price auctions where the designated winner of a cartel is not
the agent with the highest valuation. Although we are not aware of any work
that presents this result, it is also easy to extend the protocol to an environment
containing both multiple cartels and independent bidders.

Less formal discussion of collusion in auctions can be found in a wider variety
of papers. For example, a survey paper that discusses mechanisms that are
likely to facilitate collusion in auctions, as well as methods for the detection
of such schemes, can be found in [Hendricks & Porter, 1989]. A discussion
and comparison of the stability of rings associated with classical auctions can
be found in [Robinson, 1985], concentrating on the case where the valuations
of agents in the cartel are honestly reported. Collusion is also discussed in
other settings, e.g., in the context of general Bertrand or Cournot competition
[Cramton & Palfrey, 1990].

1.2 Collusion in First-Price Auctions

An influential paper by McAfee and McMillan [1992] presented the first the-
oretical results on collusion in first-price auctions. This work assumes that a
fixed number of agents participate in the auction and that all agents are part
of a single cartel that coordinates its behavior in the auction. The authors
show optimal collusion protocols for “weak” cartels (in which transfers between
agents are not permitted: all bidders bid the reserve price, using the auction-
eer’s tie-breaking rule to randomly select a winner) and for “strong” cartels (the
cartel holds a knockout auction, the winner of which bids the reserve price in
the main auction while all other bidders sit out; the winner distributes some of
his gains to other cartel members through side payments). Though it was not
the focus of their work, McAfee and McMillan also considered the case where in
addition to a single cartel there are also additional agents. However, results are
shown only for two cases: (1) where non-cartel members bid without taking the
existence of a cartel into account (i.e., either they are irrational or they hold
the false belief that no cartels exist) and (2) where each agent i has valuation
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vi ∈ {0, 1}. McAfee and McMillan explain that they do not attempt to deal
with general strategic behavior in the case where the cartel consists of only a
subset of the agents; furthermore, they do not consider the case where multiple
cartels can operate in the same auction.

The only other work of which we are aware that proposes a self-enforcing
collusion protocol for single (i.e., unrepeated) first-price auctions is Marshall
and Marx [2007]. This paper considers both first- and second-price auctions,
addresses both the repeated and unrepeated cases, and proposes both “bid
submission mechanisms” (ring protocols in which the ring center is able to
submit bids on the bidders’ behalf) and “bid coordination mechanisms” (ring
protocols in which the ring center is only able to suggest bid amounts to agents).
They assume that there is only one bidding ring involving some subset of the
agents, and that the existence and formation or non-formation of the cartel is
common knowledge among all agents participating in the auction.

Finally, a number of other papers, many of them written quite recently, have
studied collusion in repeated first-price auctions or have presented results that
bear directly on this setting [Aoyagi, 2003; Hörner & Jamison, 2007; Skrzypacz
& Hopenhayn, 2004; Blume & Heidhues, 2008; Fudenberg et al., 1994; Feinstein
et al., 1985]. Overall, these mechanisms tend to work by using folk-theorem-like
constructions, incenting some bidders to rotate their participation in the auction
through the threat of future punishment or the promise of future opportunities
to collude.

1.3 Novelty of Our Work

Our paper1 differs from related work on collusion in unrepeated first-price auc-
tions by relaxing several assumptions. Comparing to [McAfee & McMillan,
1992], we allow for the possibility that some bidders will not belong to a cartel
without assuming that agents are irrational or hold false beliefs in equilibrium,
and we allow that more than one cartel may exist, introducing the new wrin-
kle that cartel members must reason about the possibility of other cartels. We
model bidders’ valuations as real numbers drawn from an interval according to
an arbitrary distribution (as compared, e.g., to the case studied in [McAfee &
McMillan, 1992] where valuations take one of only two discrete values), and the
decision of whether or not to join a bidding ring is part of an agent’s choice of
strategy.

The recent paper by Marshall and Marx [2007] is closer to our work, but still
differs significantly. In their terminology our work proposes a bid submission
mechanism for single first-price auctions; thus, we contrast our work with their
mechanism for the same setting. Marshall and Marx [2007] extend McAfee and
McMillan [1992] in some of the same ways that we do: they identify a Bayes-
Nash equilibrium of a bidding ring mechanism that is not required to involve all

1Some of our previously published work is related to this paper. In [Leyton-Brown et al.,
2000] we considered bidding rings under the assumptions that only a single bidding ring exists,
and that bidders who were not invited to join the ring are not aware that bidding rings could
exist. [Leyton-Brown et al., 2002] was a poster presentation of work that grew into this paper;
we also posted a working version of the full paper on arXiv.org in 2002 (arXiv:cs/0201017v1).
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bidders; they consider bidders with valuations drawn from real intervals; they
include bidders’ decisions about whether to join a bidding ring as part of the
bidders’ strategy spaces. However, in several senses their results are more lim-
ited than ours. First and most importantly, they assume that non-cartel bidders
have complete information about the existence of a cartel in the auction and
about the number of bids suppressed by this cartel. We find this to be a strong
assumption, since the bidding ring is a clandestine arrangement that hides its
existence from the seller. Second, they do not allow for the existence of multiple
cartels. (It is apparently important to allow for this possibility: in an empirical
analysis of forest service auctions, Marshall and Marx themselves present evi-
dence that two cartels participated in the same first-price auction.) Third, they
do not allow agents to take their valuations into account when deciding whether
or not to join the cartel (i.e., they require that this choice be made ex ante, not
ex interim). Fourth, they are not always able to guarantee that a decision to
join the bidding ring satisfies even ex ante individual rationality, though they do
show this for some simple valuation distributions. On the other hand, in some
senses Marshall and Marx [2007] present stronger results than we do. First,
their protocol still works even when the auctioneer does not announce the iden-
tity of the winner; ours needs this information in order to require the winner
to make a payment to the ring center. Second and most notably, they allow
for bidders with asymmetric valuation distributions, while we consider only the
symmetric case. Interestingly, they write “We focus on the heterogeneous IPV
model, which is important for the study of collusion because, even if bidders are
homogeneous, collusion creates heterogeneity among them” [Marshall and Marx
2007, page 377]. One of our main technical results is that a collusive protocol
can be constructed to cancel out this heterogeneity, allowing all agents to bid
symmetrically in the auction.

In what follows, we begin by defining an auction model and establishing
some notation in Section 2. In Section 3 we give our bidder model. Some
prominent features are that the number of bidders is stochastic while the num-
ber of (unsuppressed) bids placed in the auction is perfectly observed; there can
be multiple cartels, and all agents invited to participate in one are (privately)
able to observe the number of other agents who receive invitations. We then
identify a bidding ring protocol and show that responding truthfully to this
protocol constitutes an equilibrium. We show, via an argument related to rev-
enue equivalence, that the collusion benefits both ring and non-ring members as
well as ring centers, at the auctioneer’s expense. Finally we show (as Marshall
and Marx [2007] do in their own setting) that our bidding ring protocol can be
disrupted by allowing agents to place undetected shill bids.

2 Modeling First-Price Auctions

An economic environment E consists of a finite set of agents who have non-
negative valuations for a good at auction, and a distinguished agent 0, the seller
or center. First we define a “classical” economic environment, which we denote
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Ec. Let T be the set of possible agent types. The type τi ∈ T of agent i is
the pair (vi, si) ∈ V × S. vi denotes an agent’s valuation, which we assume
represents a purely private valuation for the good. vi is selected independently
from the other vj ’s of other agents from a known cumulative distribution, F , a
continuously differentiable distribution with support on the interval [0, 1] having
non-cumulative distribution (density function) f . Throughout the paper we will
use upper- and lower-case symbols to respectively denote such cumulative and
non-cumulative distributions. By si ∈ S we denote agent i’s private signal
about the number of agents in the auction, and let ∅ denote a null signal. We
will vary the set of possible signals S throughout the paper; in Ec let S = {∅},
meaning that agents receive no information about the number of other agents
in the auction as part of their types. In our analysis we always assume that the
economic environment is common knowledge; e.g., in Ec an agent’s strategy can
depend on the number of agents in the auction even though all agents receive
the null signal.

We assume that the utility function of agent i is linear (the agent is risk-
neutral), free of externalities, and normalized (the agent achieves zero utility
for not winning the good and paying nothing). When asked to pay t, let the
utility of agent i (having valuation vi) be vi − t if i is allocated the good and
−t otherwise. bi : T → R+ ∪ {P} denotes agent i’s strategy, a mapping from
i’s type τi to his declaration in the auction. The declaration P indicates that i
will not participate in the auction.

2.1 Classical First-Price Auctions

We argue that the choice of information structure is very important for the study
of collusion in first-price auctions. The most familiar case gives rise to what we
call the “classical” first-price auction, where the number of participants2 is part
of the economic environment (this is what we have called Ec). Using standard
equilibrium analysis (e.g., following Riley and Samuelson [1981]) the unique
symmetric equilibrium can be identified.

Proposition 2.1 If valuations are selected from a continuous distribution F
having finite support, then the unique symmetric equilibrium is for each agent i
to bid the amount

vi − F (vi)−(n−1)

∫ vi

0

F (u)n−1du.

Observe that this bidding strategy is parameterized by valuation, but also
depends on information from the economic environment. It is notationally useful
for us to be able to specify the amount of the equilibrium bid as a function of
both v and n,

be(vi, n) = vi − F (vi)−(n−1)

∫ vi

0

F (u)n−1du. (1)

2When we say that n agents participate in the auction we do not count the distinguished
agent 0, who is always present.
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We are interested in constructing a collusive agreement that has bidders
with low valuations drop out of the main auction, allowing stronger bidders to
reduce their bids. (For example, this is the flavor of McAfee and McMillan’s
protocol in which cartel non-members are assumed not to behave strategically.)
However, such collusion is nonsensical in the classical first-price auction envi-
ronment. When bidders’ strategies already depend on the number of agents
in the economic environment, the amounts these bidders bid cannot change if
cartel members with low valuations fail to submit bids. This is a problem with
our auction model rather than with collusion in first-price auctions per se—in
practice bidders might not know the exact number of agents in the economic
environment, and thus adopt a strategy that depends on the number of bidders
who choose to participate in the auction.

2.2 First-Price Auctions with a Stochastic Number of
Bidders

One way of modelling agents’ uncertainty about the number of opponents they
face is to say that the number of participants is drawn from a probability distri-
bution; while the actual number of participants is not observed, the distribution
is commonly known. First-price auctions of this kind were introduced by McAfee
and McMillan [1987] (in an earlier paper that makes no mention of collusion).

This setting requires that we define a new economic environment. Let us
denote it Es. Let the definition of agents in Es be the same as in Ec (in
particular, again let all agents receive the null signal ∅). Let D` be the set of all
probability distributions d : Z→ R having support on any subset of the integers
greater than or equal to `. Denote the distribution over the number of agents in
the auction as p ∈ D2. After nature determines the number of agents by drawing
from p, let the name of each agent be selected from the uniform distribution
on [0, 1].3 The unique symmetric equilibrium was identified by Harstad et al.
[1990].

Proposition 2.2 If valuations are selected from a continuous (cumulative) dis-
tribution F having finite support, and the number of bidders is selected from the
(non-cumulative) distribution p, then it is a unique symmetric equilibrium for
each agent i to bid the amount

b(vi) =
∞∑

j=2

F j−1(vi)p(j)∑∞
k=2 F

k−1(vi)p(k)
be(vi, j).

Observe that be(vi, j) is the amount of the equilibrium bid for a bidder with
valuation vi in a classical first-price auction setting with j bidders as described
in Equation (1) above; p is deduced from the economic environment. We again

3This technical assumption prevents any agent from gaining information about the number
of agents in the auction from his own identity and the fact of his selection. We make similar
assumptions in Section 3.
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introduce notation for the equilibrium bid, this time as a function of the agent’s
valuation and the probability distribution p,

be(vi, p) =
∞∑

j=2

F j−1(vi)p(j)∑∞
k=2 F

k−1(vi)p(k)
be(vi, j). (2)

Although we will need these results in what follows, this auction model is still
insufficient for modeling collusion in a first-price auction. If each agent knows
only the distribution of agents interested in participating in the auction, he has
no way of being affected by agents who drop out! Again, this is a deficiency
of our model—in some settings agents may know how many agents bid in the
auction, even though they may not know the number of agents who chose not
to bid. For example, when an auction takes place in an auction hall, no bidder
can be sure about how many potential bidders stayed home, but every bidder
can count the number of people in the room before placing his or her bid.

2.3 First-Price Auctions with Participation Revelation

We model this auction hall scenario as a first-price auction with participation
revelation, which we define as follows:

1. Agents indicate their intention to bid in the auction.

2. The auctioneer announces n, the number of agents who registered in the
first phase.

3. Agents submit bids to the auctioneer. The auctioneer will only accept
bids from agents who registered in the first phase.

4. The agent who submitted the highest bid is awarded the good for the
amount of his bid; all other agents are made to pay 0.

When a first-price auction with participation revelation operates in Es, the
equilibrium of the corresponding classical first-price auction holds.

Proposition 2.3 In Es it is an equilibrium of the first-price auction with par-
ticipation revelation for every agent i to indicate the intention to participate,
and to bid according to be(vi, n).

Proof. Agents always gain by participating in first-price auctions when there
is no participation fee. The only way to participate in this auction is to indicate
the intention to participate in the first phase. Thus the number of agents an-
nounced by the auctioneer is equal to the total number of agents in the economic
environment. From Proposition 2.1 it is best for agent i to bid be(vi, n) when it
is common knowledge that the number of agents in the economic environment
is n.

First-price auctions with participation revelation may often be a more realis-
tic model than classical first-price auctions, since the former allows that bidders
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may not know a priori the number of opponents they will face. When bid-
ders are unable to collude, there is no strategic difference between these two
mechanisms, justifying the common use of the simpler classical model. For
the study of bidding rings, however, the difference between the mechanisms is
profound—we are now able to look for a collusive equilibrium in which bidder
strategies depend only on the number of other agents who “show up” for the
auction. More specifically, unlike the other first-price auction models we con-
sidered, first-price auctions with participation revelation have the property that
non-cartel-members’ bids will change when one or more cartel members choose
not to participate in the auction, even if the non-cartel bidders are rational and
have true beliefs about the economic environment.

3 Bidding Rings for First-Price Auctions

We define the economic environment Ebr as an extension of Es, consisting of
the distinguished agent 0 who offers a good for sale, a randomly-chosen set of
ring centers who do not value the good, and a randomly-chosen set of agents
each of whom receives an invitation from exactly one ring center. Recall that
the type τi ∈ T of agent i is the pair (vi, si) ∈ V × S. Define vi as in Ec. Let
S ⊆ N \ {0}; si ∈ S represent the number of agents in i’s bidding ring, which
is available to i as private information. Thus, when he observes his signal si,
an agent i learns that there are at least si agents in the auction, all of whom
share his ring center. We model singleton bidders as bidding rings with only
one invited agent; in this case we consider the ring automatically disbanded and
ignore the ring center.

Again p denotes the distribution over the total number of agents.4 Let
psi

denote the distribution over the total number of agents conditional on i’s
signal si, and p∼si

denote the distribution over the number of agents not in i’s
bidding ring conditional on si. Our results in the following sections depend on
the independent cartel property, which states that the distributions over the
numbers of agents in each cartel are independent.

Definition 3.1 (independent cartel property) An economic environment
satisfies the independent cartel property if ∀s, s′ ∈ S, p∼s = p∼s′ .

Here we provide one technical construction that achieves this property; our
results also hold for other constructions. Let γC(nc) ∈ D2 denote the probability
that an auction will involve nc ring centers. After a value is realized from γC(nc),
the name of each ring center is selected from the uniform distribution on [0, 1].
Let γA(n) ∈ D1 denote the probability that n agents will be associated with a
bidding ring. After the number of agents is determined, the name of each agent
associated with a potential ring center is selected from the uniform distribution
on [0, 1].

4Observe that p is concerned with the number of agents that exist, not the number of
agents who elect to participate.
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In order to write an expression for p, we must define some notation. Let
x, y ∈ D0 be independent random variables, and consider the distribution of
their sum p′. Since x and y are independent, the probability of their sum being
m is just the sum of the product of the individual probabilities of values of x
and y that sum to m,

p′ (m) =
∞∑

j=0

p (m− j) q (j) . (3)

Summing independent distributions in this way corresponds to convolution,
which we denote symbolically as p′ = p ∗ q. Observe that convolution is as-
sociative and commutative. Denote repeated convolution of distribution d as

⊗
n

d ≡
d repeated n times︷ ︸︸ ︷
d ∗ d ∗ d ∗ . . . ∗ d . (4)

We define the Kronecker delta (an indicator function) as

δm (j) ≡
{

1 if j = m;
0 otherwise. (5)

Now the following identity can be inferred from Equation (3):⊗
j

δk = δ(j·k). (6)

We can now write

p =
∞∑

n=2

γC (n)

(⊗
n

γA

)
, (7)

and for i’s posterior beliefs about p, conditioned on his signal si,

psi
=
∞∑

n=2

γC (n)

(⊗
n−1

γA

)
∗ δsi

. (8)

We denote by pn,si
the distribution over the number of agents, conditioned

on i’s signal si and the additional information that there are a total of n bidding
rings (and/or singleton bidders):

pn,si
=

(⊗
n−1

γA

)
∗ δsi

. (9)

3.1 Symmetrizing Auctions

If we were simply to run a standard first-price auction in Ebr (without partic-
ipation revelation and without imposing a bidding ring protocol) agents would
follow asymmetric strategies based on their different signals. In this section we
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describe a family of auction mechanisms that we dub symmetrizing auctions,
which impose asymmetric payment rules on agents with different signals in order
to give rise to symmetric equilibria.5 Assume for this section that the auctioneer
knows each agent’s signal. Denote a bid from agent i as µi ∈ R+ ∪ {P}, the
tuple of bids from all agents as π ∈ Π and an auction’s transfer function for
agent i (determining i’s payment) as ti : R+ ∪ {P} ×Π→ R.

We say that an auction is aligned with signal s if, in an economic environment
where the number of agents is drawn from ps and all agents receive the null
signal, the auction is efficient and incentive-compatible.

Definition 3.2 (auction aligned with a signal) An auction Ms is aligned
with signal s ∈ S if Ms allocates the good to an agent i with µi ∈ maxj µj, and
Ms is a symmetric truth-revealing direct mechanism for a stochastic number of
agents drawn from ps, each of whom receives the signal ∅.

Now we identify a class of asymmetric auctions (in which agents can re-
ceive different signals and are subject to potentially different transfer functions)
that nevertheless have symmetric truthful equilibria. Intuitively, asymmetry is
introduced into the transfer functions in a way that exactly balances the infor-
mational asymmetry among the agents. We call these auctions symmetrizing.

Definition 3.3 (symmetrizing auction) M̄ is a symmetrizing auction if it
allocates the good to an agent i with µi ∈ maxj µj, and if each agent i is made
to transfer tsi

(µi, π) to the center, with tsi
taken from an auction Msi

that is
aligned with signal si.

Using an argument related to the revelation principle, we can prove the
following result.

Lemma 3.4 Truth-revelation is an equilibrium of symmetrizing auctions.

Proof. The payoff of agent i is uniquely determined by the allocation rule, the
transfer function tsi

, the distribution over the number of agents in the auction,
and all agents’ strategies. Assume that the other agents are truth revealing,
then each other agent’s behavior, the allocation rule, and agent i’s payment
rule are all identical in M̄ and Msi

. Conditioned on his private information si,
agent i’s posterior is that psi is the distribution over the number of agents in the
auction. Since truth-revelation is an equilibrium in Msi when the distribution
of agents is psi

, truth-revelation is agent i’s best response in M̄ .

5We note that symmetrizing auctions may have applications beyond the study of collusion.
Furthermore, they are more general than presented here. For example, our results hold for
arbitrary constructions of p and families of signals, for inefficient allocation rules, and for
settings in which all agents have the same signal but agents’ payment rules are taken from
different truthful mechanisms.
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3.2 Relating p to be

In classical first-price auctions, the amounts of agents’ equilibrium bids increase
with the number of participating agents. It is intuitive to expect that the same
thing would occur in first-price auctions with a stochastic number of partici-
pants. As we show at length in Appendix A, however, simply knowing that
distribution p has a smaller expected number of participants than distribu-
tion p′—or even that p stochastically dominates p′—is not enough to determine
which distribution will give rise to a lower symmetric equilibrium bid for a given
valuation. Nevertheless, we are able to identify a class of pairs of distributions
(p, p′) for which it does hold that be(vi, p) is always less than be(vi, p

′): those
(p, p′) for which p′ convolutively dominates p.

Definition 3.5 (convolutive dominance) Given two (non-cumulative) dis-
tributions p, p′, the function p′ exhibits convolutive dominance of p if there
exists a probability density function q ∈ D0 with q(0) 6= 1 such that p′ = p ∗ q.

Lemma 3.6 ∀p, p′ ∈ D2, if p′ convolutively dominates p then be (vi, p) < be (vi, p
′).

Proof. The proof is given in Appendix A.

3.3 First-Price Auction Bidding Ring Protocol

Any number of ring centers may participate in an auction. However, we assume
that there is only a single collusion protocol, and that this protocol is common
knowledge. What follows is the protocol of a ring center who approaches k agents
and who operates in conjunction with a first-price auction with participation
revelation in the economic environment Ebr.

1. Each agent i sends a message µi to the ring center.

2. If all k agents accept the invitation then the ring center drops all bidders
except the bidder with the highest reported valuation, whom we denote
as bidder h. For this bidder the ring center indicates the intention to bid
in the main auction, and places a bid of be(µh, pn,1).

3. Otherwise, the ring center indicates an intention to bid in the main auction
on behalf of every agent who accepted the invitation to the bidding ring.
For each such bidder i, the ring center submits a bid of be(µi, pn−k+1,k),
where in this case n (the number of bidders announced by the auctioneer)
will include all agents invited to the bidding ring.

4. The ring center pays each member a pre-determined payment cn,k ≥ 0
whenever all bidders participate in the ring, which is independent of the
outcome of the auction and the amount each bidder bid, but which can
depend on n and k.

5. If bidder h wins in the main auction, he is made to pay be(µh, pn,1) to the
center and be(µh, pn,k)− be(µh, pn,1) to the ring center.
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Observe that if an agent declines an invitation to participate in a bidding
ring, the main auction will be asymmetric in the sense that different singleton
bidders will have different information about the total number of bidders in the
auction. Nevertheless, we can prove the following theorem, which is our main
result.

Theorem 3.7 It is a Bayes-Nash equilibrium for all bidding ring members to
choose to participate and to truthfully declare their valuations to their respective
ring centers, and for all non-bidding ring members to participate in the main
auction with bids of be(v, pn,1).

Proof. We begin by partitioning the space of all possible strategies and in-
troducing notation to describe these partitions. Since agents who are invited to
join a bidding ring have a richer set of strategic choices available to them than
do singleton bidders, we partition each strategy space separately. We give each
set a short name which we use throughout this proof, built up of the following
six symbols: P/P (participate/do not participate) and T/T (bid truthfully/do
not bid truthfully), given R/R (a ring bidder/a non-ring bidder).

The space of bidding ring agent strategies is partitioned as follows:

• (P |R): the agent either chooses not to participate in the auction at all, or
declines participation in the bidding ring and then bids independently in
the main auction.

• (PT |R): the agent participates in the auction, accepts the invitation to
join the bidding ring, and then lies to the ring center about his valuation.

• (PT |R): the agent participates in the auction, accepts the invitation to
join the bidding ring, and declares his true valuation to the ring center.

For the non-ring bidder, the space of strategies is partitioned as follows:

• (P |R): the agent chooses not to participate in the auction at all.

• (PT |R): the agent participates in the auction, but does not bid be(v, pn,1)
in the main auction.

• (PT |R): the agent participates in the auction with a bid of be(v, pn,1).

Given two strategy sets X and Y , and given that all agents other than
agent i follow the strategy (PT |R) or (PT |R) (as appropriate) we denote the
proposition that agent i’s expected utility for following some strategy x ∈ X is
greater than his expected utility for following any strategy y ∈ Y as u(X) >
u(Y ).

This proof consists of two main parts, the first dealing with participation
and the second dealing with bidding. In Part (1a) we show that u(PT |R) >
u(P |R), and in Part (1b) we consider the more complex case of ring bidders
and show that u(PT |R) > u(P |R). In Part (2) we show simultaneously that
u(PT |R) > u(PT |R) and that u(PT |R) > u(PT |R).
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Part 1a: u(PT |R) > u(P |R).
Recall that we assume that all other bidders bid according to (PT |R) or

(PT |R). If non-ring bidder i also bids according to (PT |R) then all bidders fol-
low a symmetric strategy in the main auction. Thus i has a non-zero probability
of winning the good and gaining a surplus. As there is no participation fee, it
is strictly better for i participate in the auction than to decline participation
altogether.

Part 1b: u(PT |R) > u(P |R).
By the argument in Part (1a) a ring bidder i should likewise opt to par-

ticipate in the auction; however, we must still consider whether i is best off
accepting or rejecting his bidding ring invitation. As discussed above, if i re-
jects the invitation then the main auction will be asymmetric; thus, this part
requires a nontrivial argument. We consider the case where cn,k = 0, as this is
the case where i has the least incentive to accept the invitation. In this discus-
sion let n represent the true number of bidding rings and singleton bidders in
the economic environment (i.e., the value realized from the distribution γc).

First, consider a different setting, which we denote (?): a first-price auction
with a stochastic number of participants in economic environment Es, with the
number of agents distributed according to pn,si

. In (?) all bidders have the
same information as i and are subject to the same payment rule. Thus, from
Proposition 2.2 it is a best response for i to bid be(vi, pn,si). Bidder i’s expected
utility is the same in (?) and when following the strategy (PT |R) in the real
auction, because both auctions allocate the good to the bidder who submits
the highest bid, both have the same distribution over the number of agents,
and both implement the same payment rule for i. Thus it suffices to show that
i’s expected utility after rejecting his bidding ring invitation is less than his
expected utility in the equilibrium of (?).

Given that all other bidders follow the strategies (PT |R) and (PT |R), if
the bidding ring did not alter its behavior in response to i’s deviation then
there would exist some distributions p and signals si for which i would gain
by declining the ring’s invitation.6 According to the protocol, however, the
bidding ring does change its behavior in response to deviation. If i declines the
invitation the ring center will send all the other members of the ring into the
main auction, causing the auctioneer to announce n + si − 1 participants. As
a result there will be si − 1 bidders placing bids of be(v, pn,si

) and n− 1 other
bidders placing bids of be(v, pn+si−1,1). We can show that these n − 1 bidders
will always decrease i’s expected utility by bidding too high. Recall Equation
(9): pn,si =

(⊗
n−1 γA

)
∗ δsi , and so pn+si−1,1 =

(⊗
n+si−2 γA

)
∗ δ1. We can

write γA = gA ∗ δ1, where gA is the distribution over the number of agents in a
bidding ring beyond the first agent. Then

6Taking into account his signal and once the auctioneer has made an announcement, i
would know that the number of agents is distributed according to pn,si ; however, if he were
to deviate then all agents would bid in the main auction as though the number of agents were
distributed according to pn+1,1. For certain values of p and si, i’s expected loss from causing
the auctioneer to announce one more participant is less than his expected gain from being
able to bid freely and from not having to make a payment to the ring center if he wins.
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pn+si−1,1 =

(⊗
n−1

γA

)
∗

(⊗
si−1

γA

)
∗ δ1

=

(⊗
n−1

γA

)
∗

((⊗
si−1

gA

)
∗ δsi−1

)
∗ δ1

= pn,si
∗

(⊗
si−1

gA

)
. (10)

Since γA has support on a subset of the positive integers, it follows that gA has
support on a subset of the integers greater than or equal to zero. And since
γA(1) < 1, gA(0) < 1. Then Equation (10) expresses convolutive dominance
of pn+si−1,1 over pn,si

, so it follows from Lemma 3.6 that be(v, pn+si−1,1) >
be(v, pn,si

). Thus if i declines the ring’s invitation, the singleton bidders and
other bidding rings will bid a higher7 function of their valuations than the
equilibrium amount in (?). A bidder’s expected gain in a first-price auction
is always reduced as other bidders’ bids increase, because his probability of
winning decreases while his gain in the event of winning remains constant. This
is the effect of i declining the offer to join his bidding ring: the si − 1 other
bidders from i’s bidding ring bid according to the equilibrium of (?), but the
n− 1 singleton and bidding ring bidders submit bids that exceed this amount.
Thus declining the offer to participate reduces i’s expected utility.

Part 2: u(PT |R) > u(PT |R) and u(PT |R) > u(PT |R).
Since in this part we consider only strategies in which the agent decides to

participate, it is sufficient to consider the equilibrium of a simpler, one-stage
mechanism in which agents are given no choice about participation. Define the
one-stage mechanism M as follows:

1. The center announces n, the number of bidders in the main auction.

2. Each bidder i submits a bid µi to the mechanism.

3. The bidder with the highest bid is allocated the good and is made to pay
be(µi, pn,si

).

4. All bidders with si ≥ 2 are paid cn,si .

M has the same payment rule for bidding ring bidders as the bidding ring
protocol given above, but no longer implements a first-price payment rule for sin-
gleton bidders. Observe that the original auction is efficient under the strategies

7Note that this occurs because the singleton bidders and other bidding rings in the main
auction follow a strategy that depends on the number of bidders announced by the auctioneer;
hence they bid as though all the si − 1 bidders from the disbanded bidding ring might each
be independent bidding rings.
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stated in the theorem because each bidder i bids be(vi, pn,1) in the main auc-
tion. Thus, in order to prove u(PT |R) > u(PT |R) and u(PT |R) > u(PT |R),
it is sufficient to show that truthful bidding is an equilibrium for all bidders in
mechanism M .

Assume that all other bidders bid truthfully, and consider the strategy of
bidder i. This bidder’s posterior distribution over the number of other bidders
he faces, given his signal si and the auctioneer’s announcement that there are n
bidders in the main auction, is pn,si

. Since agent i is made to pay be(µi, pn,si
)

if he wins, and since the good is always allocated to the agent who submits the
highest message, M is symmetrizing. From Lemma 3.4, agent i’s best response
to truthful bidding in a symmetrizing auction is to bid truthfully. Observe that
this analysis holds for both non-ring and ring bidders since it does not require
si > 1. If i is a ring bidder then he gets the additional payment cn,si in both
scenarios, but as this payment does not depend on the amount of his bid it does
not affect his strategy given his decision to participate.

Note that this equilibrium gives rise to an economically-efficient allocation,
as was mentioned in the proof of the theorem. The highest bidder in each
bidding ring always bids in the main auction, and every bidder in the main
auction places a bid according to the same function, which is monotonically
increasing in the bidder’s valuation. Because we have included bidders’ decisions
about whether to participate as part of their strategy spaces, the following result
follows directly from the arguments in the proof of Theorem 3.7.

Corollary 3.8 Participating in the bidding ring protocol according to the equi-
librium from Theorem 3.7 is ex post individually rational for all bidders.

4 Are Bidding Rings Helpful?

So far we have defined a bidding ring protocol and shown that in equilibrium
members will participate truthfully and never regret participating. However,
this does not show that the protocol is beneficial. In this section we show that
it benefits all participants except for the auctioneer. We begin by showing that
payment equivalence, a property related to revenue equivalence, holds in our
setting. This result is a useful tool for establishing who gains from bidding
rings. Using payment equivalence, we first show that the auctioneer’s revenue
is lower in the presence of bidding rings, and then that a ring center would
be willing to run the protocol. Next we consider the question of whether the
bidding ring benefits the agents. We provide affirmative answers to several
different versions of the question: agents are better off than they would be if
their own rings did not exist, than if other agents’ rings did not exist, and as
compared (given the same information either ex ante or ex interim) to a world
in which no bidding rings are possible. Finally, we show that the protocol is
unhelpful in the sense that it does not offer a unique equilibrium.

15



4.1 Payment equivalence

Although the revenue equivalence theorem does not quite apply to the bidding
ring protocol of Section 3.3, we are able to prove a very related property, payment
equivalence.

Lemma 4.1 (payment equivalence) The ex ante expected payment by an
agent in Ebr who follows the equilibrium of Theorem 3.7 (i.e., the sum of
amounts paid by this bidder to the auctioneer and the ring center) is equiva-
lent to the expected equilibrium payment of an agent in a first-price auction in
Es, where p and F are held constant between the two environments and where
cn,k = 0 in Ebr.

Proof. The proof has two parts. First we introduce a transformed mechanism
M ′ in Es that is payment equivalent to the bidding ring mechanism. Then we
argue that with cn,k = 0, M ′ is payment equivalent to a first-price auction in
Es. Combination of these two parts completes the proof.

The mechanism M ′ in Es is constructed to mimic the bidding ring protocol
in Ebr, but with the ring centers and signals absorbed into the mechanism, and
without decisions about participation. M ′ is defined as follows:

1. Each agent i sends a bid µi to the center (auctioneer).

2. From the number of bids received the center learns j, the total number of
agents in the economic environment Es. The center artificially allocates
agents to bidding rings, choosing the number of rings and the populations
of the rings according to γc and γA respectively, jointly conditioned on the
observed total number of agents j. Combined with nature’s distribution
over j, Equation (7), this implements the same distribution over the cartel
numbers and populations as is implemented by Ebr.

3. The good is allocated to the agent h with the highest bid, µh. This winning
agent is made to pay be(µh, pn,k) where n is the number of rings and k is
the size of the ring containing agent h.

4. Each agent i receives a payment cn,ki
, where ki is the number of agents

in the ring containing agent i.

As a function of the agents’ bids, M ′ implements the same allocation rule and
same ex ante expected payments as the bidding ring mechanism. Since equi-
libria are specified in terms of these functions, and since it is an equilibrium
in the bidding ring mechanism for agents to truthfully declare their valuations,
it follows that it is an equilibrium for agents to bid truthfully in M ′. Thus as
a function of agents’ valuations, in equilibrium both M ′ and the bidding ring
mechanism induce the same ex ante expected payments and allocation of the
good at auction.

Now we must show that with cn,k = 0, M ′ is payment-equivalent to a first-
price auction in Es. Observe that the revenue equivalence theorem holds in
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Es. That is, any auction mechanism in which in equilibrium, both (1) the good
is allocated to the agent with the highest valuation; and (2) any agent with
valuation zero has expected utility zero, induces the same expected payment for
an agent with valuation v. Standard proofs of this result (see, e.g., [Klemperer,
1999]) begin by showing that every agent makes the same expected payment
under any such mechanism. The same argument (not repeated here) suffices to
show that for cn,k = 0, the ex ante expected payments of agents in M ′ and a
first price auction are the same in Es; the requirement cn,k = 0 ensures that
agents with valuation zero have expected utility zero.

4.2 Ring centers gain at the expense of the auctioneer

Although payment equivalence holds, revenue equivalence does not. This is be-
cause some of the revenue that would be earned by the auctioneer in an auction
in Es is instead captured by the ring centers in the bidding ring mechanism.

Theorem 4.2 (revenue inequivalence) The expected revenue from a first-
price auction in Ebr where bidders follow the equilibrium of Theorem 3.7 is less
than the revenue of a first-price auction in Es, where p and F are held constant
between the two environments.

Proof. First consider cn,k = 0. From Lemma 4.1, the expected ex ante
payments in the two auctions are the same. But whereas the center is the sole
recipient of payments in the auction with a stochastic number of participants,
in the bidding ring mechanism agents’ payments are partially diverted from
the center to the ring centers. That a positive amount is always diverted to
the ring centers is established as follows. Since the distribution pn,k is just
pn,1 with k − 1 singleton agents added, pn,k = pn,1 ∗ δk−1. Since k ≥ 2, it
follows that pn,k convolutively dominates pn,1. It then follows from Lemma 3.6
that be(vi, pn,k) > be(vi, pn,1). This proves that a ring center always receives a
positive payment when a ring member wins; since every auction has a winner,
a positive amount is diverted from the center to the ring centers.

Next consider the case in which cn,k is positive for some (n, k). The value of
cn,k does not affect the allocation rule, and since the size of the side payment
cn,k is independent of agents’ bids, it does not affect agents’ strategies either.
Since this side payment is made between ring centers and agents, it has no effect
on the expected revenue of the auctioneer. Therefore the auctioneer’s expected
revenue for nonzero cn,k is the same as it is for cn,k = 0.

We can also show that ring centers experience a net gain on expectation from
running bidding rings as long as the unconditional payment c is small enough.

Theorem 4.3 The ring center gains on expectation if it pays agents cn,k =
1
k (gn,k − c′n,k) with 0 < c′n,k ≤ gn,k and

gn,k = k

∫ ∞
0

f(vi)
∞∑

j=2

pn,k(j)F j−1(vi) (be(vi, pn,k)− be(vi, pn,1)) dvi,
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and is budget-balanced on expectation when c′n,k = 0.

Proof. Recall from the proof of Theorem 4.2 that a ring center always receives
a positive payment when a ring member wins. gn,k is the ring center’s ex
ante expected gain if all k invited agents behave according to the equilibrium
in Theorem 3.7, the auctioneer announces n participants, and the ring center
makes no payment to the agents. Thus the ring center will gain on expectation
if each ring member’s unconditional payment is less than 1

kgn,k, and will budget-
balance on expectation when each ring member’s payment is exactly 1

kgn,k.

The payment of c to all bidders follows an idea from [Graham & Marshall,
1987] for returning a ring center’s profits to bidders without changing incentives.
In equilibrium the ring center will have an expected profit of c′n,k, though it will
lose kcn,k whenever the winner of the main auction does not belong to its ring. If
a ring center wants to be guaranteed never to lose money, it can set c′n,k = gn,k.

4.3 Bidders gain as compared to a world without bidding
rings

There are several ways of asking whether bidders gain by being invited to join
bidding rings. One natural question is whether bidders prefer a world with
bidding rings to a world without. We consider two other settings: an auction
with participation revelation in Es and an auction with a stochastic number of
bidders in Es. First we compare the three environments ex ante, asking which
environment an agent would prefer if he knew the distribution over types but
did not know what type he would receive. Second, we compare the environments
ex interim, asking which environment an agent would prefer given knowledge of
his own type. (Recall that we have defined an agent’s type to include his signal
si about the number of agents in the economic environment.)

We first consider the ex ante case. Observe that in this case an agent does
not know whether or not he will be invited to a ring, as this is part of his type.

Theorem 4.4 (ex ante) For all n ≥ 2, as long as ∃n, ∃k, γc(n) > 0 and
γa(k) > 0 and cn,k > 0, agent i obtains greater expected utility by

Case (1) participating in Ebr and following the equilibrium from Theorem 3.7
than by

Case (2) participating in a first-price auction with participation revelation in
Es with number of bidders distributed according to p; or by

Case (3) participating in a first-price auction with a stochastic number of bid-
ders in Es with number of bidders distributed according to p.

When ∀n, ∀k, cn,k = 0, agent i obtains the same expected utility in all three
cases.
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Proof. For cn,k = 0 this result follows immediately from Lemma 4.1 and the
fact that all three mechanisms are efficient. Now consider cn,k ≥ 0: The value of
cn,k does not affect the allocation rule, nor does it affect the relative expected
utility of any agent’s strategy. Thus in Case (1) an agent’s utility is higher
than in Cases (2) and (3) by his expectation over signals of cn,k. It follows that
agent i prefers Case (1) as long as there exists a pair (n, k) that is realized with
positive probability (i.e., (n, k) for which γc(n) > 0 and γa(k) > 0) and for
which cn,k > 0; otherwise, i is indifferent between the three cases.

We now consider the ex interim case.

Theorem 4.5 (ex interim, ring members) For all τi ∈ T , for all k ≥ 2,
for all n ≥ 2, for all cn,k > 0, agent i obtains greater expected utility by:

Case (1) participating in a bidding ring of size k in Ebr and following the
equilibrium from Theorem 3.7 than by

Case (2) participating in a first-price auction with participation revelation in
Es with number of bidders distributed according to pn,k; or by

Case (3) participating in a first-price auction with a stochastic number of par-
ticipants in Es with number of bidders distributed according to pn,k.

When cn,k = 0, agent i obtains the same expected utility in all three cases.

Proof. For an efficient first-price auction, an agent i’s expected utility EUi

is
∑∞

j=2 p(j)F
j−1(vi)b, where p(j) is the probability that there are a total of j

agents in the economic environment, F j−1(vi) is the probability that i has the
high valuation among these j agents, and b is the amount of i’s bid.

First, we consider Case (1). Let EUi,bc denote agent i’s expected utility in
Ebr as a member of a bidding ring of size k, in the equilibrium from Theorem 3.7.
Recall that in this equilibrium the bidder with the globally highest valuation
always wins, and if bidder i wins he is made to pay be(vi, pn,k). In any case i
receives an unconditional positive payment of cn,k. Thus,

EUi,bc =
∞∑

j=2

pn,k(j)F j−1(vi) (vi − be(vi, pn,k)) + cn,k. (11)

We now consider Case (2). From Proposition 2.3 it is an equilibrium for
agent i in economic environment Es to bid be(vi, j) in a first-price auction with
participation revelation, where j is the number of bidders announced by the
auctioneer. Since the number of agents is distributed according to pn,k, agent
i’s expected utility in a first-price auction with participation revelation, which
we denote EUi,pr, is
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EUi,pr =
∞∑

j=2

pn,k(j)F j−1(vi) (vi − be(vi, j)) (12)

=
∑∞

`=2 pn,k(`)F `−1(vi)∑∞
`′=2 pn,k(`′)F `′−1(vi)

∞∑
j=2

pn,k(j)F j−1(vi) (vi − be(vi, j))

=
∞∑

`=2

pn,k(`)F `−1(vi)

vi −
∞∑

j=2

pn,k(j)F j−1(vi)∑∞
`′=2 pn,k(`′)F `′−1(vi)

be(vi, j)


=
∞∑

`=2

pn,k(`)F `−1(vi) (vi − be(vi, pn,k)) . (13)

Observe that we make use of the definition of be(vi, p) from Equation (2).
Equation (13) is agent i’s expected utility in Case (3), so i’s expected utility is
equal in Cases (2) and (3).

Combining equations (11) and (13), we obtain

EUi,bc − EUi,pr = cn,k. (14)

When cn,k > 0, agent i’s expected utility is strictly greater in Case (1) than
in Cases (2) and (3); when cn,k = 0 he has the same expected utility in all three
cases.

What about agents who do not belong to bidding rings? We can show in
the same way that they are not harmed by the existence of bidding rings: they
are neither better nor worse off in the bidding ring economic environment than
facing the same distribution of opponents in the two cases described above.

Corollary 4.6 (ex interim, singleton bidders) For all τi ∈ T , for all n ≥
2, agent i obtains the same expected utility in each of the following cases:

Case (1) participating as a singleton bidder in Ebr and following the equilib-
rium from Theorem 3.7;

Case (2) participating in a first-price auction with participation revelation in
Es with number of bidders distributed according to pn,1;

Case (3) participating in a first-price auction with a stochastic number of par-
ticipants in Es with number of bidders distributed according to pn,k.

Proof. We follow the same argument as in Theorem 4.5, except that k = 1
and EUi,bc does not include cn,k. Thus we get EUi,bc = EUi,pr.
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4.4 Bidders gain as compared to a world where one ring
doesn’t exist

Another way of showing that bidding rings are helpful is to demonstrate that
bidders are better off being invited to a bidding ring than being sent to the
auction as singleton bidders.

Theorem 4.7 (ring members) An agent i has higher expected utility8 in a
bidding ring of size k bidding as described in Theorem 3.7 than he does if the
bidding ring does not exist and k additional agents (including i) participate
directly in the main auction as singleton bidders, again bidding as described in
Theorem 3.7, for cn,k ≥ 0.

Proof. Consider the counterfactual case where agent i’s bidding ring does
not exist, and all the members of this bidding ring are replaced by singleton
bidders in the main auction. We show that i is better off as a member of the
bidding ring (even when cn,k = 0) than in this case. If there were n potential
ring centers in the original auction and k agents in i’s bidding ring, then the
auctioneer would announce n+ k − 1 as the number of participants in the new
auction. In both cases the auction is economically efficient, which means i
is better off in the auction that requires him to pay a smaller amount when
he wins. Under the equilibrium from Theorem 3.7, as a singleton bidder i
will pay be(vi, pn+k−1,1) when he wins. If he belonged to the bidding ring
and followed the same equilibrium i would pay be(vi, pn,k) when he wins. As
argued in the proof of Theorem 3.7, Lemma 3.6 shows that ∀k ≥ 2,∀n ≥
2,∀v, be(v, pn+k−1,1) > be(v, pn,k), and so our result follows.

Intuitively, an agent gains by not having to consider the possibility that
other bidders who would otherwise have belonged to his bidding ring might
themselves be bidding rings.

We can also show that singleton bidders and members of other bidding rings
benefit from the existence of each bidding ring in the same sense. Following an
argument similar to the one in Theorem 4.7, other bidders gain from not having
to consider the possibility that additional bidders might represent bidding rings.
Paradoxically, as long as c′n,k > 0, other bidders’ gain from the existence of a
given bidding ring is greater than the gain of that ring’s members.

Corollary 4.8 (ring non-members) In the equilibrium described in Theorem
3.7, singleton bidders and members of other bidding rings have higher expected
utility when k ≥ 2 agents form a bidding ring than when k additional agents
participate directly in the main auction as singleton bidders.

Proof. Consider a singleton bidder i in the first case, where the ring of k agents
does exist. (It is sufficient to consider a singleton bidder, since other bidding
rings bid in the same way as singleton bidders.) Following the equilibrium from

8This is weakly higher (i.e., equal) expected utility for agents with the lowest possible
valuation, and strictly higher expected utility otherwise. The same caveat also holds below.
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Theorem 3.7, i would submit the bid be(vi, pn,1). In the second case, following
the equilibrium from Theorem 3.7, i would bid be(vi, pn+k−1,1). In both cases,
the auction is economically efficient, so i is better off in the case where he
makes the smaller bid. From the argument in Theorem 4.3 we know that ∀k ≥
2, be(vi, pn,1) < be(vi, pn,k); from the argument in Theorem 3.7 Part (1b) we
know that ∀k ≥ 2, be(v, pn+k−1,1) > be(v, pn,k). Thus ∀k ≥ 2, be(vi, pn,1) <
be(vi, pn+k−1,1).

4.5 Another Equilibrium

So far we have considered whether agents benefit under the equilibrium from
Theorem 3.7. However, we can also show that this equilibrium is not unique.
There is another equilibrium under which no agents accept bidding ring invita-
tions, and they instead bid according to the equilibrium for first-price auctions
with participation revelation given in Proposition 2.3.

Proposition 4.9 It is a Bayes-Nash equilibrium for each bidding ring invitee
to decline his bidding ring invitation, and for each agent i to bid be(vi, n).

Proof. If at least one agent declines the invitation to join a bidding ring, other
invitees of that bidding ring are at least as well off if they decline as well. (If
they decline then they can bid freely, rather than being made to submit bids of
a particular form.) If no agents join bidding rings then agents’ signals contain
no useful information. Thus the argument from Proposition 2.3 applies, and it
is a Bayes-Nash equilibrium for each bidder to submit a bid of be(vi, n).

The theorems and corollaries in Section 4 allow us to compare our first
equilibrium (from Theorem 3.7) with this new equilibrium (from Proposition
4.9).

Corollary 4.10 When cn,k > 0, all bidders prefer the equilibrium from Theo-
rem 3.7 to the equilibrium from Proposition 4.9 ex ante; ex post bidding ring
invitees prefer the equilibrium from Theorem 3.7 to the equilibrium from Propo-
sition 4.9, while singleton bidders are indifferent between the equilibria. When
cn,k = 0, all bidders are indifferent between the equilibria both ex ante and ex
post.

Proof. A bidder’s expected utility under the equilibrium from Proposition 4.9
in economic environment Ebr is the same as his expected utility from an auc-
tion with participation revelation in economic environment Es with the same
distribution over the number of bidders, since (as given by Propositions 2.3 and
4.9) in both cases each bidder i follows the strategy be(vi, n). Then the result
is immediate from Theorem 4.5, Corollary 4.6 and Corollary 4.4.

Since both bidders (and, trivially, ring centers) prefer the equilibrium from
Theorem 3.7 to the equilibrium from Proposition 4.9, it follows that auctioneers
have opposite preferences. It turns out that auctioneers can disrupt bidding
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rings by slightly changing the rules of the auction so that the strategies described
in Theorem 3.7 are no longer constitute an equilibrium while the equilibrium
from Proposition 4.9 is preserved. This can be achieved by making it possible
for bidders to participate in their bidding rings and also place shill bids in
the main auction without detection by the ring center.9 If all agents but i
followed the strategies specified in Theorem 3.7, i could declare a low valuation
to the ring center but also place a competitive bid in the main auction, gaining
all the benefits of the cartel without having to make any payments to the ring
center and without causing the ring to change its behavior because its invitation
had been declined. Note however that these defenses may not be available to
all auctioneers; for example, the auctioneer might be required to verify and
announce the winner’s identity.

5 Conclusions

We have presented a formal model of bidding rings in first-price auctions that
in many ways extends models traditionally used in the study of collusion. Most
importantly, in our model all agents behave strategically and take into account
the possibility that groups of other agents will collude. Other features of our
setting include a stochastic number of agents and of bidding rings in each auc-
tion, revelation by the auctioneer of the number of bids received, but bidders’
inability to detect the suppression of other bids by one or more bidding rings.
The strategy space is expanded so that the decision of whether or not to join a
bidding ring is part of an agent’s choice of strategy.

We showed a bidding ring protocol for first-price auctions that leads to
a (globally) efficient allocation in equilibrium. In this equilibrium all invited
agents choose to participate, even when the bidding ring operates in a single
auction as opposed to a sequence of auctions. This means that the protocol’s
stability does not rely on the threat of an agent being denied future opportuni-
ties to collude. Bidding rings make money on expectation, and can optionally
be configured so they never lose money.

We asked the question of whether agents gain by participating in bidding
rings in first-price auctions in three different ways:

1. Could any agent gain by deviating from the protocol?

2. Would any agent be better off if his bidding ring did not exist?

3. Would any agent would be better off (either ex interim or ex ante) in an
economic environment that did not include bidding rings at all?

We have shown that agents are strictly better off in all three senses. (In the
third sense, the gain is only strict when ring centers make an otherwise optional

9As mentioned earlier, despite studying a fairly different setting, Marshall and Marx [2007]
found that their own bidding ring protocol for unrepeated first-price auctions could also be
disrupted by allowing bidders to place shill bids.
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side-payment to agents.) We have also shown that each bidding ring causes
non-members to gain in the second sense, and does not hurt them in the third
sense.

Our work provides many opportunities for further study. These include
the following questions, all of which refer to first-price auctions in economic
environment Ebr.

• What is the optimal bidding ring protocol? (We conjecture that our pro-
tocol, with the largest possible c, gives agents the highest possible ex ante
expected utility, as compared to all efficient protocols in which the ring
center does not lose on expectation.)

• Is it possible to construct bidding ring protocols that play best responses
to each other in the main auction? (Observe that under our protocol, ring
centers do not behave strategically.)

• Can a bidding ring protocol be made to budget-balance ex post, e.g., using
ideas similar to those that Mailath and Zemsky [1991] applied to second-
price auctions?

• What is a full characterization of the symmetric equilibria of our protocol?
(We conjecture that beyond the equilibria we described, it is an equilib-
rium for agents in one cartel to continue to bid truthfully when another
cartel disbands.)

• Can our protocol be extended to allow agents to receive multiple invita-
tions to join different bidding rings? If so, will agents always want to join
the largest possible coalition? (We conjecture that they will.)

• Can any bidding ring protocol withstand shill bidding?

• Can a protocol be identified that works with risk-averse bidders, affili-
ated values, asymmetric valuation distributions, or distributions over the
number of bidders that violate the independent cartel property?
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A Relating p to be

This appendix provides more technical detail about the relationship between p
and be discussed in Section 3.2.

It is intuitive to expect that in first-price auctions, the amounts of agents’
equilibrium bids increase with the number of participating agents. We can easily
verify that this is true in the classical case.

Lemma A.1 ∀v, ∀j ≥ 2, be(v, j + 1) > be(v, j).

Proof. From Equation (1), we can write

be (v, j + 1)− be (v, j) =
∫ v

0

(
1−

(
F (u)
F (v)

))(
F (u)
F (v)

)j−1

du. (15)

The first factor in the integrand is clearly always positive, so the right-hand side
of Equation (15) is positive. Thus be (v, j) is strictly increasing in j.

This intuition does not transfer to first-price auctions with a stochastic num-
ber of bidders, in the sense that auctions with larger expected numbers of par-
ticipants do not always yield higher equilibrium bids.

Example A.2 Consider a distribution p such that only two numbers of agents
have nonzero probability: jlow and jhigh. Furthermore, let the probability mass
be evenly divided between jlow and jhigh, and denote by κ the distance between
them: jhigh = jlow +κ. Now consider the strategy of agent i. The classical case
is recovered if κ = 0, in which case i’s equilibrium bid will just be be(vi, jlow).
If κ is increased to 1, the equilibrium bid increases by a finite amount to some
be(vi, p) ∈ (be(vi, jlow), be(vi, jhigh)), as determined by Equation (2) from Sec-
tion 2.2. As κ is increased to an arbitrarily high value, F (vi)jhigh−1, the proba-
bility that agent i has the highest valuation when there are jhigh agents involved
approaches zero. With arbitrarily close to unit probability, there will be jlow

agents involved when agent i has the highest valuation, and Equation (2) indi-
cates that i’s bid will be arbitrarily close to the κ = 0 result. Thus while the
κ→∞ distribution has a higher expected number of participants than the κ = 1
distribution, it elicits a lower equilibrium bid.

This phenomenon also occurs among distributions of practical interest. So
in a first-price auction with a stochastic number of participants, simply knowing
that distribution p has a smaller expected number of participants than distribu-
tion p′ is not enough to know which distribution gives rise to a lower symmetric
equilibrium bid for a given valuation. The same holds for stochastic dominance.
For example, in Example A.2, the distribution with very large κ stochastically
dominates the distribution with κ = 1 but elicits a lower equilibrium bid. 3.6
identifies a class of pairs of distributions (p, p′) for which it does hold that
be(vi, p) < be(vi, p

′), and this class is those for which p′ convolutively dominates
p. Before we can prove this lemma, we must define additional notation that was
not given in Section 3.2.
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Let rj (F, vi, p) denote the probability that j agents participate conditional
on agent i having the highest valuation. This is equal to the probability that
j agents participate and agent i has the highest valuation among these agents,
normalized by the unconditional probability that agent i has the highest valu-
ation. Let Z (F, vi, p) be the probability that agent i has the highest valuation
given that his valuation is vi. Thus

Z (F, vi, p) ≡
∞∑

k=2

F (vi)
k−1

p (k) ; (16)

rj (F, vi, p) ≡
F (vi)

j−1
p (j)

Z (F, vi, p)
. (17)

Observe10 that Equation (2) for the equilibrium bid in a stochastic first-price
auction can be written in terms of the distribution r(F, vi, p):

be(vi, p) =
∞∑

j=2

rj (F, vi, p) be(vi, j). (18)

The cumulative distribution Rm (F, vi, p) for the distribution r, denoting
the probability that m or fewer agents participate conditional on i having the
highest valuation, is simply

Rm (F, vi, p) ≡
m∑

j=2

rj (F, vi, p) . (19)

Lemma A.3 ∀p, p′ ∈ D2, if p′ convolutively dominates p then be (vi, p) <
be (vi, p

′).

Proof. The proof has two parts. First we show that for every j, the probability
that no more than j bidders participate conditional on bidder i having the
highest valuation is at least as high when the number of agents is drawn from p as
when it is drawn from p′, and that for some j this probability is higher in p than
in p′. Next, we show that this relationship between conditional probabilities
implies that the equilibrium bid is smaller under p than under p′.

Step 1: ∀j, Rj (F, vi, p
′) ≤ Rj (F, vi, p), and ∃j, Rj (F, vi, p

′) < Rj (F, vi, p).
Consider the difference between the cumulative distributions:

∆Rj ≡ Rj (F, vi, p)−Rj (F, vi, p
′)

=
j∑

m=−∞

(
F (vi)

m−1
p (m)

Z (F, vi, p)
− F (vi)

m−1
p′ (m)

Z (F, vi, p′)

)
. (20)

10We can use 2 rather than −∞ as the lower limit of the sum in Equation (16) because p(k)
has support which is a subset of {2, 3, . . .}. While Z (F, vi, p) is undefined when F (vi) = 0,
this technicality is of no practical interest.
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The denominators can be related as follows:

Z(F, vi, p
′) =

∞∑
k=−∞

F (vi)k−1
∞∑

j=0

p(k − j)q(j)

=
∞∑

j=0

∞∑
k=−∞

(
F (vi)F (vi)j−1F (vi)k−j−1

)
p(k − j)q(j) (21)

= F (vi)
∞∑

j=0

F (vi)
j−1

q (j)
∞∑

k=−∞

F (vi)
k−j−1

p (k − j)

= F (vi)Z (F, vi, q)Z (F, vi, p) . (22)

Substituting Equation (22) into Equation (20), and making use of Equation
(3),

∆Rj =
1

Z (F, vi, p′)

j∑
m=−∞

(
Z (F, vi, q)F (vi)

m
p (m)

−F (vi)
m−1

∞∑
k=0

p (m− k) q (k)

)
(23)

=
F (vi)

Z (F, vi, p′)

( ∞∑
k=0

q (k)F (vi)
k−1

j∑
m=−∞

F (vi)
m−1

p (m)

−
∞∑

k=0

q (k)F (vi)
k−1

j∑
m=−∞

F (vi)
m−k−1

p (m− k)

)
(24)

=
F (vi)

Z (F, vi, p′)

∞∑
k=0

q (k)F (vi)
k−1

(
j∑

m=−∞
F (vi)

m−1
p (m)

−
j−k∑

m=−∞
F (vi)

m−1
p (m)

)
. (25)

To obtain Equation (24), we have reordered the sums, made use of Equation
(16) and performed factoring like that done to obtain Equation (21). To obtain
Equation (25), we have factored the bracketed expression in Equation (24) and
shifted the dummy indices of the second sum.

When k = 0, the bracketed expression in Equation (25) is zero, so that term
can be dropped from the sum. The bracketed sums can then be combined,
yielding

∆Rj =
F (vi)

Z (F, vi, p′)

∞∑
k=1

F (vi)
k−1

q (k)
j∑

m=j−k+1

F (vi)
m−1

p (m)

 . (26)
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Since k ∈ [1,∞) in Equation (26), the lower summand of the second sum is
always less than or equal to the upper summand, so that sum is well-defined.
Furthermore, all of the factors in Equation (26) are non-negative, so it remains
only to be established whether ∆Rj > 0 or ∆Rj = 0. Since p ∈ D2, there
exists some least element in the support of p; call this value m∗. For values
of j < m∗ the second sum in Equation (26) gives exactly 0, and ∆Rj = 0.
Similarly, for all values of j ≥ m∗, the second sum is nonzero, and since by
assumption ∃k > 0 such that q (k) > 0, we have that ∆Rj > 0. Thus for all j,
Rj (F, vi, p

′) ≤ Rj (F, vi, p), and for some j, Rj (F, vi, p
′) < Rj (F, vi, p).

Step 2: (∀j, Rj (F, vi, p
′) ≤ Rj (F, vi, p) and ∃j, Rj (F, vi, p

′) < Rj (F, vi, p))
implies be (vi, p) < be (vi, p

′).
We must show that ∆b > 0, where we use Equation (18) to write

∆b ≡ be (vi, p
′)− be (vi, p)

=
∞∑

m=2

(rm (F, vi, p
′)− rm (F, vi, p)) be (vi,m) .

We rewrite this sum using summation by parts (the discrete analog of inte-
gration by parts). This yields

∆b =
∞∑

m=2

(be (vi,m+ 1)− be (vi,m))
m∑

j=2

(rj (F, vi, p)− rj (F, vi, p
′)) (27)

=
∞∑

m=2

(be (vi,m+ 1)− be (vi,m)) (Rm (F, vi, p)−Rm (F, vi, p
′)) . (28)

To obtain Equation (27), we have also used the fact that both r(F, vi, p)
and r(F, vi, p) are normalized. Lemma A.1 tells us that be (vi,m) is strictly
increasing in m; clearly it is always positive. Thus be (vi,m+ 1)− be (vi,m) > 0
∀m. Furthermore, from Step 1, Rm (F, vi, p)−Rm (F, vi, p

′) is non-negative, and
for all m ≥ m∗ it is greater than zero. The right-hand side of Equation (28) is
therefore a sum of products of non-negative factors, of which at least one is a
product of strictly positive factors. Thus ∆b > 0, or be (vi, p) < be (vi, p

′).

28



References

Aoyagi, M. (2003). Bid rotation and collusion in repeated auctions. Journal of
Economic Theory, 112(1), 79–105.

Blume, A., & Heidhues, P. (2008). Modeling tacit collusion in auctions. Journal
of Institutional and Theoretical Economics, 164(1), 163–184.

Cramton, P., & Palfrey, T. (1990). Cartel enforcement with uncertainty about
costs. International Economic Review, 31(1), 17–47.

Feinstein, J., Block, M., & Nold, F. (1985). Asymmetric behavior and collusive
behavior in auction markets. American Economic Review, 75(3), 441–460.

Fudenberg, D., Levine, D., & Maskin, E. (1994). The Folk Theorem with Im-
perfect Public Information. Econometrica, 62(5), 997–1039.

Graham, D., & Marshall, R. (1987). Collusive bidder behavior at single-object
second-price and English auctions. Journal of Political Economy, 95, 579–599.

Graham, D., Marshall, R., & Richard, J.-F. (1990). Differential payments within
a bidder coalition and the Shapley value. American Economic Review, 80(3),
493–510.

Harstad, R., Kagel, J., & Levin, D. (1990). Equilibrium bid functions for auc-
tions with an uncertain number of bidders. Economics Letters, 33(1), 35–40.

Hendricks, K., & Porter, R. (1989). Collusion in auctions. Annales d’Économie
et de Statistique, 15/16, 216–229.

Hörner, J., & Jamison, J. S. (2007). Collusion with (almost) no information.
RAND Journal of Economics, 38(3), 804–822.

Klemperer, P. (1999). Auction theory: A guide to the literature. Journal of
Economic Surveys, 13(3), 227–286.

Leyton-Brown, K., Shoham, Y., & Tennenholtz, M. (2000). Bidding clubs: insti-
tutionalized collusion in auctions. ACM Conference on Electronic Commerce
(pp. 253–259).

Leyton-Brown, K., Shoham, Y., & Tennenholtz, M. (2002). Bidding clubs in
first-price auctions. American Association for Artificial Intelligence (AAAI)
(pp. 373–378).

Mailath, G., & Zemsky, P. (1991). Collusion in second-price auctions with
heterogeneous bidders. Games and Economic Behavior, 3, 467–486.

Marshall, R. C., & Marx, L. M. (2007). Bidder collusion. Journal of Economic
Theory, 133, 374–402.

McAfee, R., & McMillan, J. (1987). Auctions with a stochastic number of
bidders. Journal of Economic Theory, 43, 1–19.

29



McAfee, R., & McMillan, J. (1992). Bidding rings. American Economic Review,
82, 579–599.

Riley, J., & Samuelson, W. (1981). Optimal auctions. American Economic
Review, 71, 381–392.

Robinson, M. (1985). Collusion and the choice of auction. RAND Journal of
Economics, 16(1), 141–145.

Skrzypacz, A., & Hopenhayn, H. (2004). Tacit collusion in repeated auctions.
Journal of Economic Theory, 114(1), 153–169.

von Ungern-Sternberg, T. (1988). Cartel stability in sealed bid second price
auctions. Journal of Industrial Economics, 18(3), 351–358.

30


